2009年6月12日 星期五

從純化到星辰——CSH 蛋白質純化課側記-11

作者已不可考,如有人知道請告知
---------
(二十一)離子交換層析
做完硫酸銨沉澱以及等電點沉澱之後,下一步就是做離子交換層析(ion-exchange chromatography)。離子交換層析原理很簡單,利用蛋白質表面的帶電基團和resin上帶相反電荷的ion exchanger group 相互結合來純化蛋白。離子交換柱和affinity chromatography一樣,屬於absorption/desorption 型的層析方法,與gel filtration 完全不一樣,其中一個最大的優點
是,樣品體積可以很大,最後的洗脫樣品的體積可以小很多,這樣實際起到了一個濃縮樣品的作用。還有一個優點是,離子交換層析其實不需要柱子,可以用batch 的方法(在離心管裡面混合beads 和樣品)。當然如果beads 量多情況下,batch 方法平衡得不是很好,導致resolution 不是很好。這一點我們做實驗的時候深有體會,以後的一篇中我會提到。我們純化鈣調蛋白用了柱子做純化,原因是因為所用的beads 相當於Sephadex G50 再加上陰離子交換基團,所以實際上可以看成是ion-exchange 和gel filtration 的混合體。 Calmodulin 分子量比較小,所以很容易和分子量大的雜蛋白分開。

離子交換柱分為陽離子交換柱和陰離子交換柱,前者主要用來純化偏堿性的蛋白質,後者則用來純化偏酸性的蛋白質。絕大部分蛋白都偏酸性,所以陰離子交換柱用得更加普遍一些。常用的陽離子交換劑主要有Carboxymethyl 和sulfopropyl 兩種。Carboxymethyl 比sulfopropyl 要弱一些,所以同樣的蛋白與這兩種基團結合,後者的洗脫鹽濃度得高一些。常用的陰離子交換劑有DEAE(diethyl aminoehtyl)和Quaternary amine 兩種。後者比前者強,適用的pH 也更寬。選用何種離子交換劑要根據實際要純化蛋白的性質來決定。比如我們純化鈣調蛋白就用的是弱的陰離子交換柱DEAE,因為前面我提過,鈣調蛋白的pI 很低,蛋白很酸,與弱的陰離子交換劑也能結合得很好。而很多其它的雜蛋白沒有這麼酸,所以結合不上。這樣,用DEAE 實際上可以有效的除去很多雜質。

離子交換柱真正跑起來時非常簡單,沒有什麼技術含量,但是第一次純化一種蛋白的時
候,一定得先摸清起始條件。
首先要確定用什麼緩衝液。緩衝物由於自己帶電,所以也可以與ion-exchanger 結合。
這種結合會帶來兩方面的干擾,一個是降低了緩衝物的濃度,因而降低了緩衝能力,另一個是與蛋白質競爭ion-exchanger。所以呢,如果用陰離子交換柱, 要避免用磷酸buffer 之類的帶負電的緩衝物,如果用陽離子交換柱,則要避免用Tris buffer 之類的帶正電的緩衝物。有的緩衝物是兩性離子(zwitterionic),比如HEPES,所以陰陽兩種離子交換層析都適用。如果待純化的蛋白是膜蛋白,要用去垢劑,則應該選用非離子型或者兩性離子型的去垢劑,道理跟上面是一樣的。

第二個要注意的起始條件是pH。有些時候要分離的蛋白的活性對pH 非常敏感,所以pH 沒有太多選擇。但很多情況,應該根據待純化蛋白的性質而進行選擇。以陰離子交換柱為例,如果蛋白結合得不好,可以提高一下pH,如果蛋白結合得太緊,需要高鹽洗脫的話,則應該降低一下pH。要確定最適合的pH,可以做一個簡單的小實驗(以陰離子交換柱為例)。配pH 從5.0 到9.0,間隔為0.5 的一系列緩衝液。用這些buffer 先把beads 平衡好了,然後向每一種pH 平衡好的beads 裡面加一小等分的樣品。孵育之後,取上清測活。如果蛋白質結合上去了,上清的活性就沒有了。然後,取比活性剛剛開始結合的pH 高0.5 單位的pH作為離子交換層析實驗的pH。注意,這裡pH 不是越高越好,pH 太高,雜蛋白也能結合上,會降低ion-exchanger 的capacity。確定了buffer 和pH, 下一步要確定的是上樣時的起始離子強度,也就是樣品起始鹽濃度。用來確定鹽濃度的小實驗是這麼做的,配一系列鹽濃度從0.1M 到1M(間隔0.1M)的緩衝液。用這些buffer 平衡 beads,然後加入一小等分的樣品,孵育之後,取上清測活。低鹽濃度下的上清應該沒有活性,因為蛋白可以與beads 結合,較高鹽濃度下, 上清中應開始出現活性。 然後選擇剛剛低於洗脫蛋白所需鹽濃度的濃度作為樣品的起始鹽濃度。這樣做的好處是, 一些與ionexchanger 結合較弱的雜蛋白,一開始就不會結合到beads 上去。另外,實際跑樣品之前,如果樣品體積比較大(比如數百毫升),必須測一下電導率以確定起始鹽濃度符合要求。如果低了,就應該加鹽,高了,就應該加水。

(二十二)失敗中的啟示
離子交換層析之後是最後一步純化,疏水作用層析(hydrophobic Interaction Chromatography, HIC)。HIC 和硫酸銨沉澱是同一個原理。蛋白質表面有一些疏水區域,如果在蛋白質樣品溶液裡面加足夠的鹽,就會與這些疏水區域爭奪水分子。沒有了足夠的分子,這些疏水區域傾向於與其他疏水區域結合。HIC 的beads 上衍生有非極性基團,可以與蛋白質的疏水區域結合,這樣蛋白質就能bind 到柱子上。要想把蛋白質洗脫下來,則要用低鹽緩衝液衝洗,鹽濃度下降之後蛋白質與柱子的疏水相互作用也被削弱,所以能被衝洗下來。
由於HIC 要求樣品的起始鹽濃度很高,所以特別適於作為硫酸銨沉澱或者離子交換層析後續步驟。因為硫酸銨沉澱(無論是上清還是沉澱)和離子交換層析的產物,鹽濃度都非常高,如果直接再跑HIC,不但省了透析脫鹽的一步,還進一步純化了蛋白。現在常用的HIC resin上的疏水基團有兩種,一種是Phenyl 另一種是Octyl。比較而言,Octyl group 更加疏水一些。我們這一次的實驗中用的是Phenyl sepharose。值得強調的是,對於HIC 而言,resin 的衍生基團並不是越疏水就越好的。因為如果太疏水的話,與蛋白質的結合會十分緊密,以至於要加入有機溶劑,才能衝洗下來。但是有機溶劑同時又有可能使蛋白變性。疏水作用層析特別適用於純化鈣調蛋白。因為鈣調蛋白在有鈣離子結合的條件下,高度疏水,即使在低鹽濃度下也可以很牢固的與HIC column 結合。洗脫鈣調蛋白時,用含有EDTA 或者EGTA 的緩衝液。失去鈣離子的鈣調蛋白疏水性會降低很多, 這樣很容易被沖洗下來。

HIC 這一步,我感覺要比前一步離子交換有用的多。為什麼呢,這要從我們一組實驗中的失敗說起。跑DEAE 柱子需要我們自己裝柱,大小跟過去跑S-300 柱子差不多,裝好柱子之後我們就開始上樣。起初這個柱子沒什麼問題,但在樣品快要上完的時候,不知為何柱子裡面大量的beads 漏到了柱子的玻璃保溫夾層裡面。我們一看大事不好,只好把柱子停了,然後把beads 全掏了出來,准備用batch 的方法來洗脫蛋白。我們用了一個tissue culture 過濾media 的過濾器來做這件事情。beads 放在過濾漏鬥裡面,加含鹽的緩衝液攪拌洗滌,然後抽真空讓液體過濾出來。按道理,絕大部分鈣調蛋白應該被0.9M NaCl 的buffer 衝洗下來。

但是我們又發生了意外,衝洗的過程中過濾器被碰倒了,beads 和洗脫液撒了一桌子!眼看要成功了,竟然發生這種倒霉事情,全組人都很depressed,都有一種要就義的感覺。教員Constantin 比較有經驗,他要我們把0.9M NaCl 之前的低鹽洗脫液混在一起直接做下一步疏水作用層析。這樣一來,我們等於繞過了離子交換這一步。最後純化純化出來的蛋白讓我們大吃一驚,不但非常純不說,總量大概有幾十個毫克,跟手冊上給的通常產量差不多。這個結果說明一個問題,就是離子交換這一步雖然看起來很fancy,但對於鈣調蛋白的純化並不是那麼重要。蛋白質純化的步驟並不是越復雜越好,簡單,快速,便宜的步驟才是最好的。

沒有留言: